Installing faucet for the first time¶
This tutorial will run you through the steps of installing a complete faucet system for the first time.
We will be installing and configuring the following components:
Component
Purpose
faucet
Network controller
gauge
Monitoring controller
prometheus
Monitoring system & time series database
grafana
Monitoring dashboard
This tutorial was written for Ubuntu 16.04, however the steps should work fine on any newer supported version of Ubuntu or Debian.
Package installation¶
Add the faucet official repo to our system:
sudo apt-get install curl gnupg apt-transport-https lsb-release echo "deb https://packagecloud.io/faucetsdn/faucet/$(lsb_release -si | awk '{print tolower($0)}')/ $(lsb_release -sc) main" | sudo tee /etc/apt/sources.list.d/faucet.list curl -L https://packagecloud.io/faucetsdn/faucet/gpgkey | sudo apt-key add - sudo apt-get updateInstall the required packages, we can use the
faucet-all-in-one
metapackage which will install all the correct dependencies.sudo apt-get install faucet-all-in-one
Configure prometheus¶
We need to configure prometheus to tell it how to scrape metrics from both the faucet and gauge controllers. To help make life easier faucet ships a sample configuration file for prometheus which sets it up to scrape a single faucet and gauge controller running on the same machine as prometheus. The configuration file we ship looks like:
# my global config
global:
scrape_interval: 15s # Set the scrape interval to every 15 seconds. Default is every 1 minute.
evaluation_interval: 15s # Evaluate rules every 15 seconds. The default is every 1 minute.
# scrape_timeout is set to the global default (10s).
# Load rules once and periodically evaluate them according to the global 'evaluation_interval'.
rule_files:
- "faucet.rules.yml"
# A scrape configuration containing exactly one endpoint to scrape:
# Here it's Prometheus itself.
scrape_configs:
# The job name is added as a label `job=<job_name>` to any timeseries scraped from this config.
- job_name: 'prometheus'
static_configs:
- targets: ['localhost:9090']
- job_name: 'faucet'
static_configs:
- targets: ['localhost:9302']
- job_name: 'gauge'
static_configs:
- targets: ['localhost:9303']
To learn more about what this configuration file does you can look at the
Prometheus Configuration Documentation.
The simple explanation is that it includes an additional faucet.rules.yml
file that performs some automatic queries in prometheus for generating some
additional metrics as well as setting up scrape jobs every 15 seconds for faucet
listening on localhost:9302
and gauge listening on localhost:9303
.
Steps to make prometheus use the configuration file shipped with faucet:
Change the configuration file prometheus loads by editing the file
/etc/default/prometheus
to look like:# Set the command-line arguments to pass to the server. ARGS="--config.file=/etc/faucet/prometheus/prometheus.yml"Restart prometheus to apply the changes:
sudo systemctl restart prometheus
Configure grafana¶
Grafana running in it’s default configuration will work just fine for our needs. We will however need to make it start on boot, configure prometheus as a data source and add our first dashboard:
Make grafana start on boot and then start it manually for the first time:
sudo systemctl daemon-reload sudo systemctl enable grafana-server sudo systemctl start grafana-serverTo finish setup we will configure grafana via the web interface.
First load
http://localhost:3000
in your web browser (by default both the username and password areadmin
).The web interface will first prompt us to add a data source. Use the following settings then click
Save & Test
:Name: Prometheus Type: Prometheus URL: http://localhost:9090Next we want to add some dashboards so that we can later view the metrics from faucet.
Hover over the
+
button on the left sidebar in the web interface and clickImport
.We will import the following dashboards, just download the following links and upload them through the grafana dashboard import screen:
Configure faucet¶
For this tutorial we will configure a very simple network topology consisting of a single switch with two ports.
Configure faucet
We need to tell faucet about our topology and VLAN information, we can do this by editing the faucet configuration
/etc/faucet/faucet.yaml
to look like:vlans: office: vid: 100 description: "office network" dps: sw1: dp_id: 0x1 hardware: "Open vSwitch" interfaces: 1: name: "host1" description: "host1 network namespace" native_vlan: office 2: name: "host2" description: "host2 network namespace" native_vlan: officeNote
Tabs are forbidden in the YAML language, please use only spaces for indentation.
This will create a single VLAN and a single datapath with two ports.
Verify configuration
The
check_faucet_config
command can be used to verify faucet has correctly interpreted your configuration before loading it. This can avoid shooting yourself in the foot by applying configuration with typos. We recommend either running this command by hand or with automation each time before loading configuration.check_faucet_config /etc/faucet/faucet.yaml
This script will either return an error, or in the case of successfully parsing the configuration it will return a JSON object containing the entire faucet configuration that would be loaded (including any default settings), for example:
[{'advertise_interval': 30, 'arp_neighbor_timeout': 30, 'cache_update_guard_time': 150, 'combinatorial_port_flood': False, 'cookie': 1524372928, 'description': 'sw1', 'dot1x': None, 'dp_acls': None, 'dp_id': 1, 'drop_broadcast_source_address': True, 'drop_spoofed_faucet_mac': True, 'egress_pipeline': False, 'fast_advertise_interval': 5, 'faucet_dp_mac': '0e:00:00:00:00:01', 'global_vlan': 0, 'group_table': False, 'hardware': 'Open vSwitch', 'high_priority': 9001, 'highest_priority': 9099, 'idle_dst': True, 'ignore_learn_ins': 10, 'interface_ranges': OrderedDict(), 'interfaces': {'host1': {'acl_in': None, 'acls_in': None, 'description': 'host1 network namespace', 'dot1x': False, 'enabled': True, 'hairpin': False, 'hairpin_unicast': False, 'lacp': 0, 'lacp_active': False, 'lldp_beacon': OrderedDict(), 'loop_protect': False, 'loop_protect_external': False, 'max_hosts': 255, 'max_lldp_lost': 3, 'mirror': None, 'native_vlan': 'office', 'number': 1, 'opstatus_reconf': True, 'output_only': False, 'permanent_learn': False, 'receive_lldp': False, 'stack': OrderedDict(), 'tagged_vlans': [], 'unicast_flood': True}, 'host2': {'acl_in': None, 'acls_in': None, 'description': 'host2 network namespace', 'dot1x': False, 'enabled': True, 'hairpin': False, 'hairpin_unicast': False, 'lacp': 0, 'lacp_active': False, 'lldp_beacon': OrderedDict(), 'loop_protect': False, 'loop_protect_external': False, 'max_hosts': 255, 'max_lldp_lost': 3, 'mirror': None, 'native_vlan': 'office', 'number': 2, 'opstatus_reconf': True, 'output_only': False, 'permanent_learn': False, 'receive_lldp': False, 'stack': OrderedDict(), 'tagged_vlans': [], 'unicast_flood': True}}, 'lacp_timeout': 30, 'learn_ban_timeout': 51, 'learn_jitter': 51, 'lldp_beacon': OrderedDict(), 'low_priority': 9000, 'lowest_priority': 0, 'max_host_fib_retry_count': 10, 'max_hosts_per_resolve_cycle': 5, 'max_resolve_backoff_time': 64, 'max_wildcard_table_size': 1280, 'metrics_rate_limit_sec': 0, 'min_wildcard_table_size': 32, 'multi_out': True, 'nd_neighbor_timeout': 30, 'ofchannel_log': None, 'packetin_pps': None, 'slowpath_pps': None, 'priority_offset': 0, 'proactive_learn_v4': True, 'proactive_learn_v6': True, 'stack': None, 'strict_packet_in_cookie': True, 'table_sizes': OrderedDict(), 'timeout': 300, 'use_classification': False, 'use_idle_timeout': False}]Reload faucet
To apply this configuration we can reload faucet which will cause it to compute the difference between the old and new configuration and apply the minimal set of changes to the network in a hitless fashion (where possible).
sudo systemctl reload faucet
Check logs
To verify the configuration reload was successful we can check
/var/log/faucet/faucet.log
and make sure faucet successfully loaded the configuration we can check the faucet log file/var/log/faucet/faucet.log
:faucet INFO Loaded configuration from /etc/faucet/faucet.yaml faucet INFO Add new datapath DPID 1 (0x1) faucet INFO Add new datapath DPID 2 (0x2) faucet INFO configuration /etc/faucet/faucet.yaml changed, analyzing differences faucet INFO Reconfiguring existing datapath DPID 1 (0x1) faucet.valve INFO DPID 1 (0x1) skipping configuration because datapath not up faucet INFO Deleting de-configured DPID 2 (0x2)If there were any issues (say faucet wasn’t able to find a valid pathway from the old config to the new config) we could issue a faucet restart now which will cause a cold restart of the network.
Configure gauge¶
We will not need to edit the default gauge configuration that is shipped with
faucet as it will be good enough to complete the rest of this tutorial. If you
did need to modify it the path is /etc/faucet/gauge.yaml
and the default
configuration looks like:
# Recommended configuration is Prometheus for all monitoring, with all_dps: True
faucet_configs:
- '/etc/faucet/faucet.yaml'
watchers:
port_status_poller:
type: 'port_state'
all_dps: True
#dps: ['sw1', 'sw2']
db: 'prometheus'
port_stats_poller:
type: 'port_stats'
all_dps: True
#dps: ['sw1', 'sw2']
interval: 10
db: 'prometheus'
#db: 'influx'
flow_table_poller:
type: 'flow_table'
all_dps: True
interval: 60
db: 'prometheus'
dbs:
prometheus:
type: 'prometheus'
prometheus_addr: '0.0.0.0'
prometheus_port: 9303
ft_file:
type: 'text'
compress: True
path: 'flow_tables'
influx:
type: 'influx'
influx_db: 'faucet'
influx_host: 'influxdb'
influx_port: 8086
influx_user: 'faucet'
influx_pwd: 'faucet'
influx_timeout: 10
This default configuration will setup a prometheus exporter listening on
port 0.0.0.0:9303
and write all the different kind of gauge metrics to this
exporter.
We will however need to restart the current gauge instance so it can pick up our new faucet configuration:
sudo systemctl restart gauge
Connect your first datapath¶
Now that we’ve set up all the different components let’s connect our first
switch (which we call a datapath
) to faucet. We will be using
Open vSwitch for this which is a
production-grade software switch with very good OpenFlow support.
Add WAND Open vSwitch repo
The bundled version of Open vSwitch in Ubuntu 16.04 is quite old so we will use WAND’s package repo to install a newer version (if you’re using a more recent debian or ubuntu release you can skip this step).
Note
If you’re using a more recent debian or ubuntu release you can skip this step
sudo apt-get install apt-transport-https echo "deb https://packages.wand.net.nz $(lsb_release -sc) main" | sudo tee /etc/apt/sources.list.d/wand.list sudo curl https://packages.wand.net.nz/keyring.gpg -o /etc/apt/trusted.gpg.d/wand.gpg sudo apt-get updateInstall Open vSwitch
sudo apt-get install openvswitch-switch
Add network namespaces to simulate hosts
We will use two linux network namespaces to simulate hosts and this will allow us to generate some traffic on our network.
First let’s define some useful bash functions by coping and pasting the following definitions into our bash terminal:
# Run command inside network namespace as_ns () { NAME=$1 NETNS=faucet-${NAME} shift sudo ip netns exec ${NETNS} $@ }# Create network namespace create_ns () { NAME=$1 IP=$2 NETNS=faucet-${NAME} sudo ip netns add ${NETNS} sudo ip link add dev veth-${NAME} type veth peer name veth0 netns ${NETNS} sudo ip link set dev veth-${NAME} up as_ns ${NAME} ip link set dev lo up [ -n "${IP}" ] && as_ns ${NAME} ip addr add dev veth0 ${IP} as_ns ${NAME} ip link set dev veth0 up }NOTE: all the tutorial helper functions can be defined by sourcing
helper-funcs
into your shell enviroment.Now we will create
host1
andhost2
and assign them some IPs:create_ns host1 192.168.0.1/24 create_ns host2 192.168.0.2/24
Configure Open vSwitch
We will now configure a single Open vSwitch bridge (which will act as our datapath) and add two ports to this bridge:
sudo ovs-vsctl add-br br0 \ -- set bridge br0 other-config:datapath-id=0000000000000001 \ -- set bridge br0 other-config:disable-in-band=true \ -- set bridge br0 fail_mode=secure \ -- add-port br0 veth-host1 -- set interface veth-host1 ofport_request=1 \ -- add-port br0 veth-host2 -- set interface veth-host2 ofport_request=2 \ -- set-controller br0 tcp:127.0.0.1:6653 tcp:127.0.0.1:6654The Open vSwitch documentation is very good if you wish to find out more about configuring Open vSwitch.
Verify datapath is connected to faucet
At this point everything should be working, we just need to verify that is the case. If we now load up some of the grafana dashboards we imported earlier, we should see the datapath is now listed in the
Faucet Inventory
dashboard.If you don’t see the new datapath listed you can look at the faucet log files
/var/log/faucet/faucet.log
or the Open vSwitch log/var/log/openvswitch/ovs-vswitchd.log
for clues.Generate traffic between virtual hosts
With
host1
andhost2
we can now test our network works and start generating some traffic which will show up in grafana.Let’s start simple with a ping:
as_ns host1 ping 192.168.0.2
If this test is successful this shows our Open vSwitch is forwarding traffic under faucet control,
/var/log/faucet/faucet.log
should now indicate those two hosts have been learnt:faucet.valve INFO DPID 1 (0x1) L2 learned 22:a6:c7:20:ff:3b (L2 type 0x0806, L3 src 192.168.0.1, L3 dst 192.168.0.2) on Port 1 on VLAN 100 (1 hosts total) faucet.valve INFO DPID 1 (0x1) L2 learned 36:dc:0e:b2:a3:4b (L2 type 0x0806, L3 src 192.168.0.2, L3 dst 192.168.0.1) on Port 2 on VLAN 100 (2 hosts total)We can also use iperf to generate a large amount of traffic which will show up on the
Port Statistics
dashboard in grafana, just selectsw1
as the Datapath Name andAll
for the Port.sudo apt-get install iperf3 as_ns host1 iperf3 --server --pidfile /run/iperf3-host1.pid --daemon as_ns host2 iperf3 --client 192.168.0.1
Further steps¶
Now that you know how to setup and run faucet in a self-contained virtual environment you can build on this tutorial and start to make more interesting topologies by adding more Open vSwitch bridges, ports and network namespaces. Check out the faucet Configuration document for more information on features you can turn on and off. In future we will publish additional tutorials on layer 3 routing, inter-VLAN routing, ACLs.
You can also easily add real hardware into the mix as well instead of using a software switch. See the Vendor-specific Documentation section for information on how to configure a wide variety of different vendor devices for faucet.